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Theoretical and experimental results are presented for a laser line source in an elastic, transversely
isotropic half-space. The thermoelastic source~laser source! is represented as an appropriately
weighted shear stress dipole applied at the sample surface. The plane of isotropy coincides with the
half-space boundary. Analytical expressions representing the out-of-plane displacements for the
surface wave and for the epicentral cases are given for all crystal classes that exhibit elastic
transverse isotropy. In addition, quasianalytical results are given for observation points off the
epicentral axis. Theoretical wave forms for all of the source/observation geometries considered are
compared with experimental wave forms generated in single crystal zinc samples. The close
comparison between experiment and theory confirms, for this particular line source orientation and
crystal symmetry, that a laser line source is accurately modeled using an equivalent boundary stress.
© 2004 Acoustical Society of America.@DOI: 10.1121/1.1791721#
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I. INTRODUCTION

Since the early 1980s, laser generated ultrasound
been used to determine material properties and to chara
ize material defects1–3 To a large extent, the success of las
ultrasonics has been the researcher’s ability to correctly
dict the temporal evolution of the displacement wave fo
resulting from pulsed laser irradiation. Theories that assu
isotropic elastic properties work well for crystalline materia
that have randomly oriented grains which are small co
pared to the wavelength of the interrogating ultraso
wave.4 However, for single crystals, the anisotropic nature
the material must be considered.5

Stoneley,6 studied the propagation of Rayleigh surfa
waves in certain single crystal systems. In particular, Sto
ley analyzed three specific cases, surface waves propag
in the ~0 0 1! plane of cubic crystals along the@1 0 0# and
@1 1 0# directions, and in the basal plane of hexagonal cr
tals. Royer and Dieulesaint7 extended the work of Stonele
to include the analysis of Rayleigh wave propagation
orthorhombic and tetragonal systems. The analysis
Stoneley6 and Royer and Dieulesaint7 considered the distur
bance to have a planer phase front.

To gain a better understanding of the underlying phys
the finite extent of the source must also be considered. Kr8

extended the work of Lamb9 by considering a transversel
isotropic elastic half-space subjected to a source of fi
extent. Kraut used the method of Cagniard-de Hoop10,11 to
study the resulting displacements in single crystal Be
Other researchers12–15 have extended the work by Kraut8

For instance, Mouradet al.14 used the Cagniard-de Hoo
method to numerically obtain the solutions to Lamb’s pro
lem in an anisotropic half-space. In their paper, Mouradet al.
assumed that the laser source could be modeled as a
stress dipole16–18applied at the bounding surface. Of partic
2914 J. Acoust. Soc. Am. 116 (5), November 2004 0001-4966/2004/
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lar interest to this paper is the work by Payton19 who has
treated a general class of problems for crystals that exh
transverse isotropy. Payton furnished a detailed analysi
the solution and the solution technique for a variety of tra
sient problems in bounded and unbounded solids. In a
tion, Payton gave an explicit set of conditions, related to
elastic parameters of the material, that predict the existe
of inflection points on the slowness curve. It is we
known5,8,19,20that these inflection points lead to behavior
anisotropic materials that is markedly different from that
isotropic materials. Thus, while transverse isotropy is p
haps the simplest case to treat, it nonetheless exemplifie
peculiar behavior found in elastically anisotropic material

In this paper, the homogeneous equations of motion
a transversely isotropic material are solved subjected to a
of stress boundary conditions which has been shown to
equivalent to a thermoelastic line source in the limit
strong optical absorption.18 The plane of isotropy coincide
with the boundary plane and the epicentral direction co
cides with the crystal symmetry axis and thex3 axis, Fig. 1.
For this problem geometry/crystal symmetry, the sou
specification and the solution are independent of the
source orientation.18 However, for convenience the lin
source is taken to coincide with thex1 axis. Expressions
representing the out-of-plane displacements for wave pro
gation along~1! the free surface,~2! epicentral axis, and~3!
off the epicentral axis are given. In all cases the solutions
sought using the method of Cagniard-de Hoop. The first t
cases lend themselves to analytic solutions which in t
affords a detailed analysis of the solution procedure. The
case is solved using a quasianalytical approach in which
integration contour must be defined numerically. It is sho
that for the epicentral and off epicentral cases, the form
the solution depends strongly on the nature of the mate
anisotropy. For the sake of comparison with experimen
116(5)/2914/9/$20.00 © 2004 Acoustical Society of America
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results, particular attention will be paid to zinc. Theoretic
results are compared with experimental wave forms in
sample of single crystal zinc. Owing to the transversely i
tropic nature of the problem, the development of a li
source solution closely parallels the development of the m
general point source solution of Hurley and Spicer.21,22

II. THEORY

Before embarking on a solution procedure, it is conv
nient to classify transversely isotropic crystals according
the behavior of the displacements of these crystals along
symmetry axis. Borrowing notation from Payton,19 these cat-
egories are

~ i! ~a1b!,g,~11ab!,

~ ii ! ~b11!,g,~a1b! and ~g224ab!,0,
~1!

~ iii ! g,~b11! and ~g224ab!,0 also b.a,

where the ratios of the elastic stiffness components,a, b, g
andk are defined as

a5
c33

c44
, b5

c11

c44
, k5~11ab2g!1/2,

g511ab2S c13

c44
11D 2

. ~2!

For crystals belonging to the first category in Eq.~1!, the
roots of the slowness equation are purely imaginary. In
dition, there are no cusps in the wave-front curves that in
sect the symmetry axis for class~i! crystals. The crystals
belonging to categories~ii ! and~iii ! have complex roots. Fo
class~iii ! crystals, the triangular portion of the wave-fro
~lacuna! is centered on the symmetry axis. It will be show
that for class~i! crystals, the solutions along the free surfa
and along the epicentral direction behave in a similar man
to isotropic materials. However, the solution for class~ii ! and

FIG. 1. Problem geometry with source location and observation po
~A,B,C!. The line source is parallel to thex1 axis and the sample normal i
parallel with thex3 axis and the crystal symmetry axis.
J. Acoust. Soc. Am., Vol. 116, No. 5, November 2004 D. H. Hurley
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~iii ! crystals along the symmetry axis and off the symme
axis differs profoundly from their isotropic counterpart.

For transversely isotropic materials with the plane
isotropy coinciding with the bounding plane, the equivale
stress boundary conditions are independent of line sou
orientation18 and are given as

~s23!ux3505F̃d8~x2!H~t!, ~s33!ux35050,

~3!

F̃5~F3~12k!1F2a!, F25
B22T0

a
, F35

B33T0

a
,

whereT05q0 /rC ~Refs. 17, 23, and 24! is the instantaneous
temperature rise andBi j are the thermal pressure coefficien
The time coordinate,t5A(C44/r)t, which has dimensions
of length, was introduced so that the current analysis is c
sistent with that of Payton.19 The transformed homogenou
equations of motion appropriate for a line source appl
along a plane of transverse isotropy are given by

2bh2ū21ū2,332s2ū21 ikhū3,350,
~4!

ihkū2,32h2ū31aū3,332s2u350.

where s and h are the transform parameters fort and x2 ,
respectively.25 Solutions to the above system of equations
of the form

ū2~h,x3 ,s!5A1e2k1x31A2e2k3x3,
~5!

ū3~h,x3 ,s!5A3e2k1x31A4e2k3x3,

wherek1/3 are the physical roots to the slowness curve. Ne
the following substitution will be made so as to facilitate t
Cagniard inversion technique:

k5sz, h5sv. ~6!

The denominator of the secular equation can be rewri
using the above substitutions as

az42z2~~a11!1gv2!1~bv41~b11!v211!50.
~7!

The four roots to Eq.~7! may be written as

z1~v!5
@~a11!1gv21Af~v!#1/2

A2a
,

z2~v!52z1~v!,

z3~v!5
@~a11!1gv22Af~v!#1/2

A2a
, ~8!

z4~v!52z3~v!,

f~v!5@gv21~a11!#224a@bv41~b11!v211#.

The coefficientsA3 andA4 are related toA1 andA2 by the
fact that the above displacements must solve the equation
motion. By substituting both solutions into the transform
equations of motion, it can be shown that

A15A3Faz1
22v221

ikvz1
G ,

ts
~9!
2915and J. B. Spicer: Laser ultrasound in an anisotropic half-space
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The coefficientsA3/4 are found by requiring the displace
ments in Eq.~5! satisfy the boundary conditions in Eq.~3!,

A35
F̃z1v2

sC44~z12z3!D
@az3

21~k21!v21~k21!#,

A45
2F̃z3v2

sC44~z12z3!D
@az1

21~k21!v21~k21!#, ~10!

D5@2~12k!~v41v2!2~gv21a!~v211!2az1z3#,

whereD is the Rayleigh denominator.

A. Solutions along the bounding surface

For displacements along the bounding plane (x350),
the Cagniard integration path is along the imaginaryv axis.
Operating on theu3 displacement with the inverse Fourie
operator as follows, and noting thatu3 is even inv, gives

ū3~x2,0,s!5Re
1

p E
0

`

ũ3~s,v!dv,

ũ3~s,v!5
2F̃v2

C44D
@az1z31~12k!~v211!#eisvux2u,

~11!

Cagniard Path→ ivux2u5t5real.

Before the Cagniard inversion can be performed, the bra
points and singularities associated withū3 must be identified.
Branch points forj~v! may arise in two distinct ways:

~ i! f~v!50,
~12!

~ ii ! gv21~a11!6Af~v!50.

Presently, only the inversion ofu3 is being considered. Sinc
u3 is an even function ofAf(v), branch points arising from
~i! in Eq. ~12! need not be considered. The singularities
the functionD(v) will now be discussed. Since the branc
points for this function have been discussed above, only p
singularities inD(v) need to be considered. After squarin
and simplifying, the equation for the Rayleigh denomina
yields

a6v21a~a12a!v41a~2a1a2b!v21a~a21!50,
~13!

a52k221g.

The roots of interest will lie on the positive imaginary ax
The remaining roots will lie on the nonphysical sheets of
Riemann surface. The~Rayleigh! pole of Eq. ~13! will be
denoted byD( iv r)50. Now the integration contour and th
subsequent inversion of the integral in Eq.~11! may be per-
formed. Figure 2 shows the complexv plane along with the
integration contour. The real axis coincides with the Four
inversion path and the imaginary axis coincides with
Cagniard inversion path. The inverted solution may be w
ten formally as
2916 J. Acoust. Soc. Am., Vol. 116, No. 5, November 2004 D. H.
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u3~x2,0,t!5L21F 1

p
ReH E

C1

1P È1

ũ3~s,iv2!i dv

1$ ipresidue@v5 iv r%

1E
C3

1E
1

1/Ab
ũ3~s,iv2!i dv

1E
C4

1E
1/Ab

0

ũ3~s,iv2!i dvJ G , ~14!

whereL21 is the inverse Laplace operator and theP in front
of the second integral denotes the Cauchy principle value
typical displacement wave form generated using Eq.~14! is
shown in the inset of Fig. 3. The initial disturbance, referr
to as the surface-skimming bulk wave, arrives at the lon
tudinal velocity and vanishes at the shear wave velocity. T
later arriving Rayleigh wave travels as a Dirac delta functio
The characteristics of the wave form for class~i!, class~ii !,

FIG. 2. Integration contour for the vertical displacement,u3 , at the bound-
ing surface.

FIG. 3. Comparison between experiment and theory for the surface w
case. The sample is single crystal zinc with thec axis perpendicular to the
free surface. The nonzero experimental displacement corresponding t
interval between the end of the surface skimming bulk wave and the ar
of the Rayleigh pulse is a result of pulse broadening. Inset: Theore
displacement,u3 , for surface waves generated with a line source in zinc
a function ofT5t/x2 . A delta function is represented by vertical line
T51.13.
Hurley and J. B. Spicer: Laser ultrasound in an anisotropic half-space
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and class~iii ! materials are similar. The similarity is due t
the fact that the contribution from the branch point cor
sponding to~i! in Eq. ~12! does not affect the solution for th
vertical displacement. However, this is not the case for
in-plane displacement components.

B. Solutions along the symmetry axis

Another class of solutions that can be inverted ea
using the Cagniard technique corresponds to solutions a
the epicentral axis, or for this particular experimental geo
etry, along the symmetry axis@see observation point~B! in
Fig. 1#. The location of the Cagniard path in the compl
plane depends on the category of crystal being investiga
For materials belonging to category~i!, the Cagniard path is
along the realv axis. For class~ii ! and ~iii ! materials, the
Cagniard path is off the realv axis. The formal solution for
the out-of-plane displacement along the epicentral axis
given as

ū3~0,x3 ,s!5
1

2p E
2`

`

ũ3~h,x3 ,s!s dv,

~15!
ũ3~h,x3 ,s!5A3e2z1x3s1A4e2z3x3s,

whereA3 andA4 are defined in Eq.~10!. Also note that since
the roots to the slowness equations,z1 and z3 , are even
functions ofv, ũ3(h,x3 ,s) is also even, allowing the inte
gration limit to be changed to the positivev axis. For con-
venience the following substitutions are made:

Ã5v2,

ū3~0,x3 ,s!5
1

p
Re$I 11I 3%,

~16!

I 15E
0

`

Ā3e2z1x3s dÃ, I 35E
0

`

Ā4e2z3x3s dÃ,

Ā3/45
A3/4s

2AÃ
.

This substitution consolidates the branch cuts along the
and imaginary axes so they both lie on the real axis. T
Cagniard path for the integrals in Eq.~16! is defined by

z1/3~Ã!x35t,
~17!

t is real and positive.

1. Solution for class (i) materials

For class~i! materials, the above condition ont is met
for real Ã, giving the positive realÃ axis as the Cagniard
contour. Solving Eq.~8! for Ã in terms oft gives

Ã1/35
2B6AB224AC

2A
,

A5b,

B5b112g~T!2, ~18!

C512~a11!~T!21a~T!4,
J. Acoust. Soc. Am., Vol. 116, No. 5, November 2004 D. H. Hurley
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Note that the definition forT has been redefined for the ep
central case~see Fig. 3 caption!. Changing variables fromÃ
to t and operating on the expression for the vertical displa
ment, given in Eq.~16!, with the inverse Laplace operato
gives

u3~0,x3 ,T!5F̃J~T!,
~19!

J~T!5
1

pF̃
ReH Ā3

]Ã1

]t
H~T21!

1Ā4

]Ã3

]t
H~T21/Aa!J .

A typical wave form generated from Eq.~19! using the ma-
terial constants of Beryl is shown in Fig. 4. The displacem
wave form for Beryl has characteristics similar to the d
placement wave form for an isotropic material, also shown
Fig. 4. Both wave forms show the presence of two disti
wave arrivals.

2. Solution for class (ii) and (iii) materials

For class~ii ! and ~iii ! materials, the Cagniard path n
longer lies on the realÃ axis. Before embarking on the so
lution for these materials, first the location of the bran
points must be investigated. As was the case for soluti
along x350, branch points associated withz~v! may occur
in two ways. In contrast to the surface wave case, the exp
sion for ū3 for the epicentral case is an odd function
Af(Ã), and as a consequence, the branch points ari
from ~i! need to be considered in addition to the bran
points arising from~ii ! @see Eq.~12!#. The expression for
Af(Ã) may be rewritten as

FIG. 4. Top: Theoretical displacement,u3 , for the epicentral wave gener
ated with a line source in Beryl as a function ofT. Bottom: Theoretical
displacement,u3 , for the epicentral wave generated with a line source in
isotropic material~polycrystalline aluminum!.
2917and J. B. Spicer: Laser ultrasound in an anisotropic half-space



Af~Ã!5A~g224ab!~Ã2Ã1!~Ã2Ã2!,
~20!

Ã65
2@g~a11!22a~b11!#7A4@a~a1b2g!~11ab2g!#

~g224ab!
.

t
t

d

e

Taking zinc as an example,z1 will have branch points a
Ã5Ã2 and Ã5Ã1 while z3 will have branch points a
Ã5Ã2 , Ã5Ã1 , Ã521, and Ã521/b. The Cagniard
path for the first integral is again defined by Eq.~17!, but Ã
is now a complex variable given by

Ã5Ã11 iÃ2 . ~21!

Substituting Eq.~21! into Eq.~17!, and equating the real an
imaginary part of the equation gives

gT2Ã11~a11!T22aT45b~Ã1
22Ã2

2!1~b11!Ã111,
~22!

gT2Ã252bÃ1Ã21~b11!Ã2 .
is

tra
o
n
o

2918 J. Acoust. Soc. Am., Vol. 116, No. 5, November 2004 D. H.
The second equation of Eqs.~22! is satisfied ifÃ250. Since
the branch points for class~ii ! and ~iii ! materials lie on the
real axis, the first equation in Eqs.~22! imposes the addi-
tional constraints

Ã2<Ã1<Ã1 for z1~Ã!,
~23!

21/b<Ã1<Ã1 for z3~Ã!.

If Ã2Þ0, thenÃ2 andÃ1 can be expressed in terms of th
parameterT5t/x3 as follows:
Ã1~T!5
gT22~b11!

2b
, Ã2~T!5

@A4ab2g2~T22T2
2 !~T22T1

2 !#

2b
, ~24!

T6
2 5

2@g~b11!22b~a11!#6A4b~a1b2g!~11ab2g!

~4ab2g2!
.

ef-
the
e-
ve.
or-
ne

The

ing
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the
Using zinc as an example, the Cagniard paths forz1 andz2

are shown in Fig. 5. The expression for the out-of-plane d
placement in Eq.~16! may be rewritten as

ū3~0,x3 ,t!5L21F 1

p
ReH E

t0

t1

I 111E
G1

I 111E
G2

I 111E
t0

te
I 33

1 R
Ã1

I 331E
te

t0
I 33E

t0

t1

I 331E
G3

I 33

1E
G4

I 33J G ,
I 115Ā3e2st

]Ã

]t
dt, I 335Ā4e2st

]Ã

]t
dt,

t05T0x35A~a11!2A~a11!224a

2
,

~25!

te5Tex35A2B1AB224aC

2a
,

B52~Ã1g1a11!,

C5Ã1
2 b1Ã1~b11!11.

A plot of the theoretical displacement along the epicen
axis for zinc is given in the inset of Fig. 6. The character
the epicentral wave form for zinc is considerably differe
than its isotropic counterpart, shown in Fig. 4. The arrivals
-

l
f
t
f

the various wave fronts in Fig. 6 is best understood by r
erencing the portion of the wave front curve that pierces
symmetry axis, Fig. 5 inset. The first wave arrival corr
sponds to the longitudinal branch of the wave front cur
The solution gives zero for the portion of the wave that c
responds to the interior of the cuspidal triangle. This zo
behind the leading wave front is referred to as a lacuna.
solution has a singularity atT5T1 corresponding to the
conical point on the wave front.

C. Observation points off the symmetry axis

Consider the inverse of Eq.~5! for observation points
that are neither along the symmetry axis nor on the bound
surface. The geometry of the problem is shown in Fig
where now the point of observation is point C. The source
a surface line source. The observation angle,u, is defined as
the angle between the symmetry axis and a line joining
source and observation point. Formally, the inverse of Eq.~5!
is written as

ū3~x2 ,x3 ,t!5L21F 1

p
ReE

0

`

~A3e2z1x3s

1A4e2z3x3s!eisvux2us dvG . ~26!

The Cagniard path for Eq.~26! is defined by

~a! z1x32 ivux2u5t,
Hurley and J. B. Spicer: Laser ultrasound in an anisotropic half-space
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~b! z3x32 ivux2u5t, ~27!

t is real and positve.

The parametric equations representing the Cagniard path
obtained by substituting Eqs.~8! into Eqs.~27! and squaring
twice to eliminate the radicals. This procedure yields a fou
order equation forv of the form

A~u!v41B~u,T!v31C~u,T!v21D~u,T!v1E~u,T!50,

A~u!5F~u!14ab2g2,

B~u,T!5
8iaT sin~u!F~u!

cos2~u!
,

FIG. 5. Cargniard contour for zinc for observation points along the sym
try axis. Solid line represents contour corresponding toz1 and the dashed
line represents the contour corresponding toz3 . Inset: Enlargement of wave
front near symmetry axis.

FIG. 6. Comparison between experiment and theory for the epicentral c
The sample is single crystal zinc with thec axis perpendicular to the free
surface. The nonzero experimental displacement corresponding to the
rior of the cuspidal triangle is a result of pulse broadening. Inset: Theore
displacement,u3 , for the epicentral wave generated with a line source
zinc as a function ofT.
J. Acoust. Soc. Am., Vol. 116, No. 5, November 2004 D. H. Hurley
are

h

C~u,T!52F~u!G~u,T!216
a2T2 sin2~u!

cos4~u!

22~a11!g14a~b11!,
~28!

D~u,T!5
8iaT sin~u!G~u,T!

cos2~u!
,

E~u,T!5G~u,T!2~a11!214a,

F~u!52S 2a sin2~u!1g cos2~u!

cos2~u!
D 2

,

G~u,T!5
2aT22~11a!cos2~u!

cos2~u!
.

Equation ~28! has four complex roots,Q1 , Q2 , Q3 , and
Q4 , which occur in complex conjugate pairs. The roots
beledQ1 and Q3 correspond to the physical sheets of t
Riemann surface. For the special case of an isotropic so
a5b5g/2, Eq. ~28! can be factored into two second ord
equations that can be solved analytically. For the pres
problem of transverse isotropy, the roots must be found
merically.

The character of the Cagniard paths is dictated by
location of the lacunas relative to the observation directi
Thus, all crystal classes will have Cagniard paths with sim
lar characteristics. As a representative example, the Cagn
path for zinc will be discussed in detail. The wave front f
zinc is shown in the inset of Fig. 7. The lacunas in theR1

branch are centered along the symmetry axis and along
bounding surface. Figure 7 shows the Cagniard path for
observation angle,u510°, that intersects the lacuna. With th
Cagniard path numerically defined, the inversion of t
transformed displacements, Eq.~26!, may be performed. The
off epicentral vertical displacement in zinc for a detecti
angle of 10° is shown in the inset of Fig. 8. The characte

-

se.

te-
al

FIG. 7. Cargniard contour for zinc for observation points off the symme
axis ~u510°!. Solid line represents contour corresponding to Eq.~27a! and
the dashed line represents the contour corresponding to Eq.~27b!. Inset:
Enlargement of wave front near symmetry axis.
2919and J. B. Spicer: Laser ultrasound in an anisotropic half-space
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tics of the wave form shown in Fig. 8 are similar to th
epicentral wave form shown in Fig. 6. The primary diffe
ence is the splitting of the wave resulting corresponding
the conical portion of the wave front.

III. EXPERIMENT

The experimental setup used to generate and detec
trasound is shown in Fig. 9. The generation of the ultraso
disturbance was accomplished by irradiating the sample w
a pulsed Nd:YAG operating at 1.064mm.26–28The transverse
spatial profile was Gaussian and the temporal pulse len
was approximately 10 ns. The energy per pulse was typic
20 mJ. The ultrasonic disturbance was detected with a sk
stabilized Michelson interferometer operating at 632.8 n
The upper limit of the bandwidth was determined to a la
extent by the frequency response of the photodetectors in
interferometer. The photodetectors were manufactured
EG&G ~product designation FFD-040! and have a specified
upper bandwidth limit of 150 MHz into a 50V load. The
lower limit of the bandwidth, estimated at 1 kHz, was d

FIG. 8. Comparison between experiment and theory for an observa
point off the symmetry axis. The sample is single crystal zinc with thec axis
perpendicular to the free surface~u510°!. Inset: Theoretical out-of-plane
displacement due to line-source excitation in zinc as a function ofT.

FIG. 9. Experimental setup. A Nd:YAG laser is used to generate the u
sonic disturbance and a Michelson-type interferometer is used to detec
ultrasound.
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tated by the characteristics of the stabilization circuit. If t
interferometer signal voltage is much smaller that the int
ferometer peak-to-peak voltage, then the signal voltage
the surface displacement are related as follows:

Ds5Vi S 632.8 nm

2p D , ~29!

whereDs represents the surface displacement andVi repre-
sents the ratio of the interferometer signal voltage to the p
to peak voltage.

For same side detection, care had to be taken so as n
saturate the photodiodes in the interferometer with light fr
the Nd:YAG laser that had scattered off the sample surfa
A beam stop was used to collect the specular componen
the scattered light while a 1.064mm band reject filter was
used to block the remaining scattered light from reaching
photodiodes. In order to approximate an infinite line sour
a convex/concave lens combination was used as a teles
to expand the beam while a cylindrical lens was used
focus the generation beam to a line. This technique of g
erating a laser line source was exploited by Aindowet al.29

to produce high amplitude surface acoustic waves. The
proximate line dimensions, as measured from a piece of la
profiling paper, were 20 mm30.2 mm.

The single crystal zinc specimens were cleaved alo
basal planes and then polished using Buehler Carbimet p
to produce a mirrorlike surface. The crystal orientation w
determined using x-ray diffraction. The polished surface w
perpendicular to the x-ray beam resulting in a diffracti
pattern that had sixfold symmetry, confirming that the p
ished surface coincided with the basal plane. The cylindr
zinc sample used for same side detection had a radius o
mm and a length of 60 mm. The sample used for detectio
epicentral waves had a radius of 15 mm and a length o
mm. The voltage signals from the interferometer were
corded using a LeCroy 9354m digital oscilloscope operat
at 500 M samples/s.

IV. RESULTS AND DISCUSSION

A comparison between theory and experiment for sa
side detection is presented for single crystal zinc~c axis per-
pendicular to the surface! in Fig. 3. The experimental curve
is single shot data and the source/receiver separation wa
mm. The theoretical result, inset Fig. 3, is convolved with
Gaussian function~full width at half-maximum5300 ns! in
order to mimic broadening effects. Pulse broadening
same-side detection is mainly caused by the finite tra
time of the acoustic signal across the detection/genera
spot. The first disturbance turns on and off at times cor
sponding to the arrival of the longitudinal wave and she
wave, respectively. The largest disturbance correspond
the Rayleigh pole and is in the form of a traveling de
function. The amplitude of the Rayleigh wave for the the
retical curve was scaled to match the experimental am
tude. Since the data was single shot, comparison of theo
ical and experimental amplitudes allows an estimate of
optical reflection coefficient. The theoretical amplitud
given in Eq.~18!, is expressed by

n

-
the
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ARayleigh5F̄c rq0S 1

N̄Ap
DAC44/r,

~30!

F̄5
1

rC FB33

C44
~12k!1

B22

C44
aG ,

whereq0 represents the absorbed laser energy andN̄ repre-
sents the Gaussian pulse width. The data shown in Fig. 3
produced by a 37 mJ pulse distributed over 1 cm. Scaling
theoretical amplitude of the Rayleigh wave to match the
perimental data, the reflectivity at the sample surface w
estimated to be 90%, which is comparable to published
ues for zinc. It should be noted that the accuracy of th
results decreases as the aspect ratio, the ratio betwee
line source length and the source receiver distance,
creases.

Before comparing experiment and theory for the epic
tral and off-epicentral cases, the effect of ultrasonic refl
tions from the back surface of the sample must be con
ered. Each time the wave reflects off the sample surface
amplitude and temporal character of the wave are modifi
The modification to the wave is described by reflection
efficients, which are a function of observation angle. For
isotropic case, Rose17 shows that along the epicentral dire
tion, reflection primarily alters the amplitude of the reflect
wave. It is assumed that a similar result holds for anisotro
materials and for small angles off axis. Since the emphas
this paper is to compare the temporal character between
periment and theory, the effect of reflection off the back s
face will not be taken into account.

Figure 6 compares theory and experiment for displa
ment along the epicentral axis for a sample of single cry
zinc ~c axis perpendicular to the free surface!. The source/
receiver distance was 5 mm and the signal was average
times to improve the signal-to-noise ratio. Again, the the
retical result was convolved with a Gaussian~FWHM520
ns!. Pulse broadening for detection along the epicentral
rection is primarily due to the finite temporal pulse width
the generation laser. Zinc is a class~iii ! crystal and, as a
result, the displacement character differs markedly from
isotropic counterpart, Fig. 4. In a fashion similar to that
the surface wave case, the first disturbance turns on an
at times corresponding to the arrival of the longitudin
wave, T1 , and shear wave,T2 , respectively. AfterT2 , the
displacement is identically zero until the arrival of the m
jority of the acoustic energy atT1 . A comparison between
experiment and theory for an observation point off the sy
metry axis,u510°, is shown in Fig. 8. Similar to the analys
presented in Fig. 6, the data was averaged 25 times and
volved with a Gaussian (N̄520 ns). Figure 8 clearly show
the splitting of the wave caused by the conical portion of
wave front.

V. CONCLUSION

It was found that for a transversely isotropic half-spa
the laser source could be modeled as a shear stress d
applied at the free surface. A formal solution of the proble
was found using double~Fourier–Laplace! transforms. The
J. Acoust. Soc. Am., Vol. 116, No. 5, November 2004 D. H. Hurley
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Cagniard–de Hoop technique was used to analytically inv
the transformed solution for the epicentral case as well as
the surface wave case. A quasianalytical approach, where
Cagniard path was defined numerically, was used to inv
the transformed solution for observation points off the sy
metry axis.

Experimental validation of the theory was performed u
ing single crystal zinc samples. The zinc samples were cu
have the free surface coincide with a plane of isotropy. T
oretical and experimental results for zinc agreed well for
the source/observation geometries considered.
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